Improved Upper Bounds of Differential and Linear Characteristic Probability for Camellia

نویسندگان

  • Taizo Shirai
  • Shoji Kanamaru
  • George Abe
چکیده

We discuss the security of the block cipher Camellia against differential attack and linear attack. The security of Camellia against these attacks has been evaluated by upper bounds of maximum differential characteristic probability (MDCP) and maximum linear characteristic probability (MLCP) calculated by the least numbers of active S-boxes which are found by a search method[2]. However, we found some truncated differential paths generated by the method have wrong properties. We show a new evaluation method for truncated differential and linear paths to discard such wrong paths by using linear equations systems and sets of nonzero conditions. By applying this technique to Camellia, we found tighter upper bounds of MDCP and MLCP for reduced-round Camellia. As a result, 10-round Camellia without FL/FL has no differential and linear characteristic with probability higher than 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward Provable Security Against Differential and Linear Cryptanalysis for Camellia and Related Ciphers

We present a new algorithm that evaluates provable security against differential and linear cryptanalysis for Feistel ciphers with invertible substitution-diffusion (SD)-based round functions. This algorithm computes an upper bound on the maximum expected differential or linear probability (MEDP or MELP) based on the number of rounds. We then apply our algorithm to Camellia (minus FL/FL). Previ...

متن کامل

Upper bounds on differential characteristics in Twofish

In [SK+98] the Twofish block cipher was introduced, and initial estimates of an upper bounds on the probability of a 12-round differential were given. These results used an imperfect model of Twofish. We present an improved model, and show that any 12-round differential characteristic has a probability of at most 2−102.8.

متن کامل

ON THE CHARACTERISTIC DEGREE OF FINITE GROUPS

In this article we introduce and study the concept of characteristic degree of a subgroup in a finite group. We define the characteristic degree of a subgroup H in a finite group G as the ratio of the number of all pairs (h,α) ∈ H×Aut(G) such that h^α∈H, by the order of H × Aut(G), where Aut(G) is the automorphisms group of G. This quantity measures the probability that H can be characteristic ...

متن کامل

Upper Bounds of Maximum Values of Average Differential and Linear Characteristic Probabilities of Feistel Cipher with Adder Modulo

The paper discusses the Feistel cipher with a block size of n = 2m, where the addition of a round key and a part of an incoming massage in each round is carried out modulo 2m. In order to evaluate the security of such a cipher against differential and linear cryptanalyses, the new parameters of cipher s-boxes are introduced. The upper bounds of maximum average differential and linear probabilit...

متن کامل

ALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS

Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002